Madhukar N. Jachak*, Appasaheb B. Avhale, Vijay J. Medhane and Raghunath B. Toche
Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce and A. M. Science College, Gangapur
Road, Nashik-422 002, India/Asia
mn jachak@hotmail.com Received October 32005

4 a-b

9 a-b

10 a-b
11 a-b
11 a-b

Friedländer condensation of 5-aminopyrazole-4-carbaldehydes $\mathbf{1}$ with formamide 2a or benzamide 2b gave pyrazolo $[3,4-d]$ pyrimidine derivatives $\mathbf{3}$. Cyclocondensation of $\mathbf{1}$ with cyclopentanone, N-benzyl-4piperidone and 6-methoxy-1-tetralone yielded cyclopenta[b]pyrazolo[4,3-e]pyridines 4, pyrazolo[3,4-b]$[1,6]$ naphthyridines 5 and benzo[h]pyrazolo[3,4-b]quinolines 6, respectively. Analogous condensation of cyclohexanone 7a or 2-methyl-1-cyclohexanone 7b with $\mathbf{1}$ afforded pyrazolo[3,4-b]quinoline derivatives 8a-d. Heating 1 with dimedone furnished pyrazolo[3,4-b]quinolinone derivatives 9. Vilsmeier-Haack formylation of $\mathbf{9}$ yielded a mixture of two compounds 10 and 11. Further bispyrazolo[3,4-b:4,3-f]quinolines 12a, \mathbf{b} were obtained on cyclocondensation of $\mathbf{1 1 a}, \mathbf{b}$ with phenyl hydrazine.
J. Heterocyclic Chem., 43, 1169 (2006).

Heterocyclic ring systems that containing the pyrazole ring fused to pyrimidine, quinoline or benzoquinoline rings are interesting classes of compounds both chem.ically and biologically. For example, pyrazolopyrimidines display significant chemical properties [1-7], whereas pyrazoloquinolines and pyrazolobenzoquinolines exhibit a wide range of biological properties [8-15]. Our ongoing interest in this area encouraged us to report the synthesis of title compounds.

In a recent paper [16], we have reported the synthesis of pyrazolo fused pyridines using orthoaminoaldehyde $\mathbf{1}$ as a starting material. In this paper we extended this work towards the synthesis of several pyrazolo[3,4-d]pyrim-
idine, pyrazolo[3,4-b]quinolines and pyrzolo[3,4-b]benzoquinolines from 1. Compound 1 was synthesized by the method reported in our previous communication [16]. The Friedlander condensation of ortho-aminoaldehyde 1 with amides was performed without catalyst or solvent. Thus a mixture of 1a or $\mathbf{1 b}$ and the corresponding formamide 2a or benzamide 2b was heated at $170-180^{\circ} \mathrm{C}$ to afford pyrazolo[3,4-d]pyrimidines 3a-d in 56-61\% yield. However, similar condensation of $\mathbf{1 a}$, or $\mathbf{1 b}$ with cyclic ketones was unsuccessful.

According to our previous protocol [16], a mixture of 1a or 1b and cyclic ketones such as cylopetanone or N -benzyl-1-piperidone, on refluxing in ethanolic potassium
hydroxide furnished cylopenta[b]pyrazolo[4,3-e]pyridine 4 and pyrazolo[3,4-b][1-6]napthyridine 5 in 68-73\% yield. The cyclocondensation of 6-methoxy-1-tetralone, cyclohexanone 7a or 2-methyl-1-cyclohexanone 7b with 1, under similar reaction conditions smoothly yielded benzo[h]pyrazolo[3,4-b]quinoline 6, pyrazolo[3,4-b]quinoline 8 respectively. However, reaction of $\mathbf{1 a}$ or $\mathbf{1 b}$ with dimedone was unsuccessful in ethanolic KOH , hence this condensation was achieved by heating at $140-150^{\circ} \mathrm{C}$, which offered 3-(4-chloro/bromopheny)-7,7-dimethyl-1-phenyl-1,6,7,8-terahydro-5H-pyrazolo[3,4-b]quinoline 9 (Scheme 1). Compounds 3, 4, 5, 6, $\mathbf{8}$ and 9 were characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, nmr; e.g., the IR spectrum of 9a showed carbonyl stretching bands at 1728 cm^{-1}, the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum showed a singlet at $\delta 1.19$, for 6 methyl protons, singlets at $\delta 2.69$ and $\delta 3.24$ due to the 4 methylene protons and a down field singlet at $\delta 9.09$
corresponding to $\mathrm{C}_{4}-\mathrm{H}$. The ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum of this compound exhibits peaks at $\delta 28,32,47,52$, for gemdimethyl and $\mathrm{C}_{7}, \mathrm{C}_{6}, \mathrm{C}_{8}$ carbons respectively, aromatic carbon resonances appear between $\delta 76-162$ and carbonyl carbon resonances appears at δ 197. The elemental analysis obtained is in agreement with the molecular formula. The mass spectral analysis showed an ion with $\mathrm{m} / \mathrm{z} 401(\mathrm{M}+$), which supports the proposed structure 9a.
Pyrazolo[3,4-b]quinolines 9 with α-methylene group are useful compounds for further synthetic transformations. Thus, Vilsemeier Haack formylation of 9 with excess of N, N-dimethylforamide and phosphorous oxychloride afforded a mixture of two compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ in 1:2 ratio respectively. This mixture was separated by column chromatography using toluene/hexane as the eluent. The structural assignment of 10a and 11a was

Scheme 1

$\begin{array}{lll} & \mathbf{1} & \mathbf{1}-\mathbf{b} \\ & \mathbf{a} & \mathrm{Cl} \\ \mathbf{b} & \mathrm{Br}\end{array}$

accomplished by spectral and analytical data. Compound 10a showed a sharp singlet at $\delta 6.13$ for $\mathrm{C}_{6}-\mathrm{H}$, while in 11a this peak was not present and another singlet at δ 10.48 was observed corresponding to the aldehyde proton. All other signals of 10a and 11a are nearly identical. The ${ }^{13} \mathrm{C} \mathrm{nmr}$ of 10a showed a peak at $\delta 138$ for C_{6}, for 11a this peak is observed further down field at $\delta 155$. Also, for 11a, a $\mathrm{C}=\mathrm{O}$ peak is observed at $\delta 192$, which is absent in the spectrum of 10a. A stretching vibration in the IR spectrum of 11a is observed at $2745 \mathrm{~cm}^{-1}$, which further supports the aldehyde function group at C_{5}. The mass spectrum of $10 a$ exhibited an ion with $\mathrm{m} / \mathrm{z} 419.10$, and that of 11a exhibited an ion with $\mathrm{m} / \mathrm{z} 447.09$. Thus, compound 10a was assigned as 5-chloro-3-(4-chlorophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro- 1 H -pyrazolo[3,4-b]quinoline and 11a was assigned as 5-chloro-3-(4-chlorophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro- $1 H$-pyrazolo[3,4- b]quinoline-6-carbaldehyde.
The structure of bromoderivatives 10b and 11b were established similarly. Chloro and chloroformyl products like that of $\mathbf{1 0}$ and 11, formed through the Vilsmeier Haack reaction, are not common in the literature. Pyrazolo[3,4-b]quinolines $\mathbf{1 1}$ are bifunctional compounds and hence interesting to extend bispyrazolo[3,4-b:4,3-f]quinoline libraries, e.g., bispyrazolo[3,4-b:4,3-f]quinoline derivatives 12, were obtained by cyclocondensation of $\mathbf{1 1}$
with phenyl hydrazine in refluxing ethanol. The IR and ${ }^{1} \mathrm{H}$ nmr spectra of compounds $\mathbf{1 2}$ clearly show that the aldehyde functional group is no longer present, and in the ${ }^{13} \mathrm{C}$-nmr spectra of these compounds a peak at $\delta 192$ for $\mathrm{C}=\mathrm{O}$ was not observed and new a peak at $\delta 139$ was observed corresponding to C_{3}. The elemental analyses are in agreement with proposed structures (Scheme 2).

The reactions reported here represent new synthetic methods towards novel fused aza heterocyles, with high yields, simple workup, and clean products.

EXPERIMENTAL

Melting points were determined on a Gallenkamp Melting Point Apparatus in open capillary tubes and are uncorrected. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded on a Varian XL-300 spectrometer (300 MHz). Chemical shifts are reported in ppm from internal tetramethylsilane standard and are given in δ-units. The solvent for NMR spectra was deuteriochloroform. Infrared spectra were taken on a Shimadzu IR-408 in potassium bromide pellets unless otherwise stated. The mass spectrum was recorded on QP-2010s. Elemental analyses were performed on a Hosli CH -Analyzer and are within ± 0.4 of the theoretical percentages. All reactions were monitored by thin layer chromatography, carried out on 0.2 mm silica gel 60 F-254 (Merck) plates using uv light (254 and 366 nm) for detection. Column chromatography was carried out on silica gel (SD Fine Chemicals, 60-80 mesh).

Scheme 2

Common reagent grade chemicals are either commercially available and were used without further purification or prepared by standard literature procedures.

3-(4-Chlorophenyl)-1-phenyl-1 H-pyrazolo[3,4- d]pyrimidine (3a).
A mixture of 1a ($0.60 \mathrm{~g}, 2 \mathrm{mmol}$) and formamide (2a) $(0.39 \mathrm{~mL}, 10 \mathrm{mmol})$ was heated at $170-180^{\circ} \mathrm{C}$ for 1 hour. The solid obtained on cooling was collected by filtration, washed with cold ethanol (5 mL), dried and recrystallized from ethyl acetate to yield colorless prisms, $0.37 \mathrm{~g}(61 \%), \mathrm{mp} 186-187^{\circ} \mathrm{C}$; ir: 2678, 1595, $1559 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta 7.40-7.64$ (m, $5 \mathrm{H}, \mathrm{Ph}$), 8.04 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 8.32 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 9.19(\mathrm{~s}, 1 \mathrm{H}$ $\mathrm{C}_{6}-\mathrm{H}$), 9.53 (s, $1 \mathrm{H} \mathrm{C}_{4}-\mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{nmr:} \delta 105.7,124.9,125.5,127.3$, 128.9, 134.2, 137.7, 139.5, 142.1, 150.2, 151.6, 154.4 (17 ArC); ms: 308(M+2), 306(M+), 271, 243, 217, 195.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{4}: \mathrm{C}, 66.56 ; \mathrm{H}, 3.61 ; \mathrm{N}, 18.26$. Found: C, 66.82; H, 3.56; N, 18.98.

3-(4-Chlorophenyl)-1,6-diphenyl-1 H -pyrazolo[3,4- d]pyrimidine (3b).

This compound was obtained from $\mathbf{1 b}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and benzamide ($\mathbf{2 b}$) ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$) using the method described for 3a; yield $0.45 \mathrm{~g}(59 \%)$, colorless prisms, $\mathrm{mp} 198-199^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2675, 1593, $1552 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.38-7.72$ (m, 5H, Ph), 7.86(m, 3H, Ph), 7.96 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.42 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 9.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ nmr: $\delta 106.3,120.5,124.7,125.4,127.2,127.3,128.5,128.5$, 129.2, 131.4, 134.6, 137.6, 139.8, 142.3, 150.4, 159.7 (23 ArC); $\mathrm{ms}:(\mathrm{m} / \mathrm{z}), 384(\mathrm{M}+2), 382(\mathrm{M}+1), 304,269,241,193$.
Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClN}_{4}$: C, 72.16; H, 3.95; $\mathrm{N} ; 14.63$. Found: C, 72.36; H, 4.18; N, 14.72.
3-(4-Bromophenyl)-1-phenyl-1 H-pyrazolo[3,4- d]pyrimidine (3c).

This compound was obtained from $\mathbf{1 b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and formamide (2a) ($0.39 \mathrm{~mL}, 10 \mathrm{mmol}$) using the method described for 3a; yield $0.42 \mathrm{~g}(60 \%)$, colorless prisms, $\mathrm{mp} 191-192{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2664, 1592, $1555 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.36-7.71$ (m, 5H, Ph), 7.93 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.27$ (d, J $=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 9.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 9.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta$ 105.8, 120.9, 124.9, 125.6, 127.5, 128.9, 134.4, 137.9, 139.6, 142.2, 150.3, 151.3, 151.7, 154.5, 917 ArC); ms: m/z, 352 $(\mathrm{M}+2), 350\left(\mathrm{M}^{+}\right), 315,287,261,239$.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{4}$: C, $58.14 ; \mathrm{H}, 3.16 ; \mathrm{N} ; 15.95$. Found: C, 58.26; H, 3.35; N, 16.12.

3-(4-Bromophenyl)-1,6-diphenyl-1 H -pyrazolo[3,4- d]pyrimidine (3d).

This compound was obtained from $\mathbf{1 b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and benzamide ($\mathbf{2 b}$) ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$) using the method described for 3a; the yield was $0.50 \mathrm{~g}(58 \%)$ colorless prisms, mp 208-209 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2668, 1596, $1557 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 7.25-$ 7.47 (m, 5H, Ph), 7.58-7.68 (m, 3H, Ph), 7.69(d, J=8.4Hz, 2H, ArH), 8.01 (d, $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$) 8.44 (m 2H, ArH), 9.51 (s, 1 H , $\left.\mathrm{C}_{6} \mathrm{H}\right) ;{ }^{13} \mathrm{Cnmr}: \delta 106.4,120.7,124.8,125.5,127.4,127.5$, 128.6, 128.9, 129.3, 131.5, 134.7,
137.8, 142.5, 150.6, 153.4, 159.9 (23 ArC); ms: (m/z), 426, (M^{+}), 348, 313, 285.

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{BrN}_{4}: \mathrm{C}, 64.65 ; \mathrm{H}, 3.54 ; \mathrm{N} ; 13.11$. Found: C, 64.38; H, 3.65; N, 13.32.

3-(4-Chlorophenyl)-1-phenyl-1,5, 6, 7-tetrahydrocyclopenta[b]-pyrazolo[4,3-e]pyridine (4a).

A solution of $\mathbf{1 a}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and cyclopentanone $(0.16$ $\mathrm{mL}, 2 \mathrm{mmol}$) in ethanolic potassium hydroxide ($10 \mathrm{~mL}, 2 \%$) was reflux for one hour. The mixture was then cooled to room temperature, the solid obtained was collected by suction filtered, washed with ethanol and recystallized from ethyl acetate to yield $0.48 \mathrm{~g}(69 \%)$ of $\mathbf{4 a}$ as colorless prisms, $\mathrm{mp} 174-175^{\circ}$; ir: 2718, $1592,1556 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ nmr: $\delta 2.21$ ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.03 (t, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.11\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 7.27-7.55 (m , $5 \mathrm{H}, \mathrm{Ph}) 7.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.32(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C} \mathrm{nmr} \delta: 25.8,34.3,35.8,114.4,120.6$, $124.8,125.7,127.5,128.3,128.9,131.4,134.6,137.8,139.4$, 142.2, 149.2, 163.2 (18 ArC): ms: (m/z): 345 (M^{+}), 303, 226.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3}$: C, 72.93; H, 4.66; N, 12.15. Found: C, 72.82; H, 4.56; N, 12.28.

3-(4-Bromophenyl)-1-phenyl-1,5,6,7-tetrahydrocyclopenta[b]-pyrazolo[4,3-e]pyridine (4b).

This compound was obtained from $\mathbf{1 b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and cyclopentanone ($0.16 \mathrm{~mL}, 2 \mathrm{mmol}$) using the method described for 4a; yield 0.53 g (68%), colorless prisms, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2716, 1593, $1556 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 2.20$ (q, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.95\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.05(\mathrm{t}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.26-7.65(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 8.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 8.06\left(\mathrm{~s}, 1 \mathrm{H} \mathrm{C} \mathrm{C}_{4}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ nmr : $\delta 25.9,34.5,35.9,114.5,120.8,124.9$,
125.8, 127.6, 128.5, 128.9, 131.6, 134.7, 137.9.142.3, 149.5, 163.5 (18 ArC); ms: (m/z), $389\left(\mathrm{M}^{+}\right), 347,270$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrN}_{3}: \mathrm{C}, 64.63 ; \mathrm{H}, 4.13 ; \mathrm{N} ; 10.77$. Found: C, 64.76; H, 4.34; N, 10.79 .

6-Benzyl-3-(4-chlorophenyl)-1-phenyl-5,6,7,8-tetrahydro-1 H -pyrazolo[3,4-b][1,6]-naphthyridine (5a).
A solution of $\mathbf{1 a}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and N-benzyl-1-piperidone ($0.37 \mathrm{~mL}, 2 \mathrm{mmol}$) in ethanolic potassium hydroxide solution (10 $\mathrm{mL}, 2 \%$) was reflux for one hour. The mixture was cooled to room temperature, the solid product that precipitated was collected by suction filtration and washed with ethanol and recrystallized from ethyl acetate to yield 0.66 g (73%) of $\mathbf{5 a}$ as colorless prisms, mp $212-213{ }^{\circ} \mathrm{C}$; ir: $2289,1596,1556 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.99(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 3.26 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.26 (s, 2H, CH_{2}), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), $7.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 7.31-7.62(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 7.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 8.34(d, J=8.4Hz, $2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{H} n m r: \delta 33.3,50.8,55.6$, $62.6,113.4,120.7,124.9,125.5,127.3,127.5,128.1,128.3,128.9$, $129.0,131.3,134.2,137.7,139.5,142.1,150.2,153.9$ (24 ArC); $\mathrm{ms}(\mathrm{m} / \mathrm{z}), 450(\mathrm{M}+), 372,358,331$.
Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{4}: \mathrm{C}, 74.57 ; \mathrm{H}, 5.14 ; \mathrm{N}, 12.42$. Found: C, 74.62; H, 5.24; N,12.58.

6-Benzyl-3-(4-bromophenyl)-1-phenyl-5,6,7,8-tetrahydro-1 H pyrazolo [3,4-b][1,6]-naphthyridine (5b).

This compound was obtained from $\mathbf{1 b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and N -benzyl-1-piperidone ($0.37 \mathrm{~g}, 2 \mathrm{mmol}$) using the method described for 5a; yield $0.70 \mathrm{~g}(71 \%)$ colorless prisms, mp $234-235^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2290, 1594, $1554 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.29-$ $7.57(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 7.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 8.37 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ nmr: $\delta 33.4,50.9,55.8$, 62.7, 105.9, 120.8, 124.9, 124.7, 127.5, 127.5, 128.4, 128.9, 129.2,
131.534.3, 137.8, 139.6, 142.3, 150.3, 153.4, (24 ArC); ms: (m/z), 494 (M+), 416, 402, 297.

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrN}_{4}: \mathrm{C}, 67.88 ; \mathrm{H}, 4.68 ; \mathrm{N} ; 11.31$. Found: C, 67.96; H, 4.85; N, 11.52.

3-(4-Chlorophenyl)-8-methoxy-1-phenyl-5,6,7,8-tetrahydro-1 H benzo $[h]$ pyrazolo[3,4- b]quinoline ($\mathbf{6 a}$).

A solution of $1 \mathbf{1 a}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and 6-methoxy-1-tetralone $(0.35 \mathrm{~g}, 2 \mathrm{mmol})$ in ethanolic potassium hydroxide ($10 \mathrm{~mL}, 2 \%$) was heated at reflux temperature for one hour. The mixture was cooled to room temperature, and the solid obtained was collected by suction filtration and washed with ethanol. The yield was 0.60 g (68%), colorless prisms, mp 194-195 (ethyl acetate); ir: $2339,1597,1550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 2.97(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.06\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.77$ $\left(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}\right), \quad 6.96\left(\mathrm{dd}, \mathrm{J}=8.4,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}\right)$, $7.15-7.48(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.82\left(\mathrm{dd}, \mathrm{J}=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}\right), 7.95(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 8.53(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}),{ }^{13} \mathrm{C}$ nmr: $\delta \quad 29.8,30.2,52.8,114.6,120.4,121.7,122.4$, $124.6,125.6,126.4,127.3,127.7,128.4,128.6,129.4,131.3$, 134.2, 137.7, 142.5, 148.4, 154.6, 159.2, (24 ArC); $\mathrm{ms}(\mathrm{m} / \mathrm{z})$, 437 (M+), 422, 255, 218, 179.

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 74.05 ; \mathrm{H}, 4.60 ; \mathrm{N}, 9.60$. Found: C, $74.24 ;$ H, $4.72 ;$ N, 9.76.

3-(4-Bromophenyl)-8-methoxy-1-phenyl-5,6,7,8-tetrahydro-1 H benzo h]pyrazolo[3,4- b]quinoline ($\mathbf{6 b}$).

A mixture of 1b ($0.68 \mathrm{~g}, 2 \mathrm{mmol}$) and 6-methoxy-1-tetralone $(0.35 \mathrm{~g}, 2 \mathrm{mmol})$ was reacted by the method described for $\mathbf{6 a}$; yield $0.64 \mathrm{~g}(66 \%)$, colorless prisms, mp 198-199 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $2341,1595,1551 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 2.99(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.15\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.78(\mathrm{~d}$, $\left.\mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}\right), 6.97\left(\mathrm{dd}, \mathrm{J}=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{H}\right)$, 7.15$7.48(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.83\left(\mathrm{dd}, \mathrm{J}=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{10}-\mathrm{H}\right), 7.99(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right), 8.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH). ${ }^{13} \mathrm{C}$ nmr: $\delta \quad 29.9,30.4,52.9,114.7,120.5,121.9,122.6$, $124.7,125.4,125.7,126.5,127.4,127.9,128.6,128.7,129.5$, $131.4,134.4,137.9,142.5,148.7,154.7,159.4$ (24 ArC); ms: (m/z), 481 (M+), 466, 299, 262, 223.

Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{C}, 67.23 ; \mathrm{H}, 4.18 ; \mathrm{N} ; 8.71$. Found: C, 67.36; H, 4.38; N, 8.92.

3-(4-Chlorophenyl)-1-phenyl-5,6,7,8-tetrahydro-1 H -pyrazolo-[3,4-b]quinoline (8a).

A solution of $1 \mathbf{1 a}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and cyclohexanone (7a) $(0.21 \mathrm{~g}, 2 \mathrm{mmol})$ in ethanolic potassium hydroxide ($10 \mathrm{~mL}, 2 \%$) was reflux for one hour. The mixture was then cooled to room temperature and the solid obtained was collected by filtration and washed with ethanol. The yield was $0.56 \mathrm{~g}(78 \%)$, colorless prisms, mp 160-161 ${ }^{\circ}$ (ethyl acetate); ir: $1742,1605,1510 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{nmr}: \delta 1.65\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \quad 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96\left(\mathrm{t}, \mathrm{J}=7 \mathrm{H}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.27-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$ $7.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.46(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{nmr}: \delta \quad 29.8,31.6,31.9,113.4,120.2,125.1$, 126.7, 128.1, 128.8, 129.2, 131.4, 134.0, 139.6, 141.7, 150.1, 162.2 (18 ArC); ms: (m/z), $359\left(\mathrm{M}^{+}\right), 341,326$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3}: \mathrm{C}, 73.63 ; \mathrm{H}, 5.04 ; \mathrm{N}, 11.68$. Found: C, 73.87; H, 5.28; N, 11.84.

3-(4-Chlorophenyl)-8-methyl-1-phenyl-5,6,7,8-tetrahydro-1 H pyrazolo [3,4-b]quinoline ($\mathbf{8 b}$).

This compound was obtained from pyrazolecarbaldehyde 1a $(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and methyl-1-cyclohexanone (7b) ($0.24 \mathrm{~mL}, 2$ mmol) using the method described for $8 \mathbf{a}$; the yield was 0.62 g (83%) colorless prisms, $\mathrm{mp} 126-127^{\circ} \mathrm{C}$ (ethyl acetate); ir: 1739 , $1598,1552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 1.55\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.11$ $\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 7.27-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) 7.96(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}) ;{ }^{13} \mathrm{C} n m r: \delta, 21.3,29.8,30.0,31.6,36.9,113.5,120.3,125.2$, $126.9,128.2,128.7,128.9,129.3,131.6,134.1,139.8,141.8$, 150.1, 162.1 (18 ArC); ms: (m/z) 373 (M+), 352, 337.

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3}$: C, $73.89 ; \mathrm{H}, 5.39 ; \mathrm{N} ; 11.24$. Found: C, 73.96; H, 5.58; N, 11.52.

3-(4-Bromophenyl)-1-phenyl-5,6,7,8-tetrahydro-1 H -pyrazolo-[3,4-b]quinoline (8c).

This compound was obtained from $1 \mathrm{~b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and cyclohexanone ($\mathbf{7 a}$) $(0.21 \mathrm{~mL}, 2 \mathrm{mmol})$ using the method described for $\mathbf{8 a}$; yield $0.46 \mathrm{~g}(76 \%)$, colorless prisms, mp 168$169{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $1741,1596,1551 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.63$ (t, J=7Hz, 2H, CH2 $), 1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.8$ (t, J=7Hz, 2H, CH2 $)$, 7.25-7.52 (m, 5H, Ph) $7.93(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ nmr: $\delta 29.9,31.8,31.9,113.5,120.4,125.2,126.6,128.1,128.6$, $128.9,129.3,131.5,134.2,139.7,141.8,150.3,162.3$ (18 ArC); $\mathrm{ms}:(\mathrm{m} / \mathrm{z}) 403(\mathrm{M}+), 385,370$.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{3}$: C, $65.36 ; \mathrm{H}, 4.49 ; \mathrm{N} ; 10.39$. Found: C, 65.56; H, 4.86; N, 10.26.

3-(4-Bromophenyl)-8-methyl-1-phenyl-5, 6, 7, 8-tetrahydro-1Hpyrazolo $[3,4-b]$ quinoline ($\mathbf{8 d}$).

This compound was obtained from $\mathbf{1 b}(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and 2-methyl-1-cyclohexanone (7b) ($0.24 \mathrm{~mL}, 2 \mathrm{mmol})$ using the method described for $8 \mathbf{a}$; yield 0.67 g , (82%); colorless prisms; $\mathrm{mp} 131-132{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $1740,1597,1552 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 1.60\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.09(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 7.24-7.63(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) 7.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta$ $21.4,29.9,30.2,31.7,36.9,113.7,120.5,126.9,128.8,128.9$, $129.4,131.7,134.3,139.9,141.9,150.2,162.3$ (18 ArC); ms: (m/z) $417(\mathrm{M}+), 396,381$.

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{3}: \mathrm{C}, 66.04 ; \mathrm{H}, 4.82 ; \mathrm{N} ; 10.04$. Found: C, 66.16; H, 4.95; N, 10.12.
3-(4-Chlorophenyl)-7,7-dimethyl-1-phenyl-1,6,7,8-tetrahydro$5 H$-pyrazolo[3,4-b]quinolin-5-one (9a).

A mixture of 1a $(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and dimedone $(0.28 \mathrm{~g}, 2$ mmol) was heated at $140-150{ }^{\circ} \mathrm{C}$ for half an hour. The solid obtained on cooling was stirred in ethanol (2 mL) for 10 minutes. The solid obtained was collected by filtration and washed with cold ethanol (5 mL). Yield $0.61 \mathrm{~g}(76 \%)$, colorless prisms, mp 197-198 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: 1728, 1592, 1556 cm^{-1}; ${ }^{1} \mathrm{H}$ nmr: $\delta 1.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.39-7.62(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) 8.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{nmr}: \delta$, $28.3,32.9,47.4,52.3,114.5,121.2,122.8,126.3,128.3,129.1$, 130.3, 130.7, 137.7, 138.8, 162.4, (18 Ar C), $197.0(\mathrm{C}=\mathrm{O})$; ms: (m/z) $401(\mathrm{M}+), 345,282$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{C}, 71.73 ; \mathrm{H}, 5.02 ; \mathrm{N}, 10.46$. Found: C, $71.82 ; \mathrm{H}, 5.23 ; \mathrm{N}, 10.68$.

3-(4-Bromophenyl)-7,7-dimethyl-1-phenyl-1,6,7,8-tetrahydro5 H -pyrazolo[3,4-b]quinolin-5-one (9b).

This compound was obtained from pyrazolecarbaldehyde 1b $(0.68 \mathrm{~g}, 2 \mathrm{mmol})$ and dimedone $(0.28 \mathrm{~g}, 2 \mathrm{mmol})$ using the method described for 9 a; yield $0.66 \mathrm{~g}(74 \%)$ colorless prisms, mp 214-215 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $1726,1597,1554 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 1.18\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.29-7.73 (m, 5H, Ph), 7.99 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.21 (d, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 28.5,32.8$, 47.6, 52.4, 114.7, 121.4, 122.9, 126.5, 128.4, 128.9, 129.3, 130.4, 130.8, 135.2, 137.9, 138.9, 162.7, (18 ArC), 197.3 (C=O); ms: (m/z) $445(\mathrm{M}+), 389,326$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}: \mathrm{C}, 64.58 ; \mathrm{H}, 4.52 ; \mathrm{N} ; 9.41$. Found: C, 64.76; H, 4.68; N, 9.74.

General Procedure for the Preparation of 5-Chloro-3-(4-halophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro-1 H -pyrazolo-[3,4-b]quinoline $\mathbf{1 0}$ and $\mathbf{1 1}$.

To a solution of compound $9(2 \mathrm{mmol})$ in dimethylformamide ($0.77 \mathrm{~mL}, 10 \mathrm{mmol}$), phosphorous oxychloride (0.56 mL , 6 mmol) was added in small portions at $10-15^{\circ} \mathrm{C}$ with stirring, further this reaction mixture was stirred at $80-90^{\circ} \mathrm{C}$ for 6 hours and then poured into ice cold water (50 mL). The precipitated product was collected by suction filtration, washed with water and dried. The tlc of this solid showed spots corresponding to two compounds (R_{f} values: 0.78 and 0.63 in toluene) which were separated by column chromatography ($18 \times 300 \mathrm{~mm}$, eluent toluene/hexane 5:100, elution volume for 10: $220-240 \mathrm{~mL}$, for 11: $380-410 \mathrm{~mL}$), detection by tlc analysis (254 nm).

5-Chloro-3-(4-chlorophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro$1 H$-pyrazolo[3,4-b]quinoline (10a).

This compound was obtained from Vilsmeier-Haack formylation of compound $9 \mathrm{a}(0.80 \mathrm{~g}, 2 \mathrm{mmole})$ The yield was 0.20 g (24\%), colorless prisms, $\mathrm{mp} 170-171^{\circ} \mathrm{C}$ (ethyl acetate); ir: $2287,1592,1556 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 1.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.13(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $6.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 7.36-7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) 8.02(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.44(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{4} \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ nmr: $\delta 27.9,34.6,46.5,113.8,122.9,124.8,126.0$, $127.4,128.4,128.9,129.1,131.0,134.5,136.6,139.2,143.5$, 157.5, (20 ArC); ms: (m/z) 419 (M+), 318, 345.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3}$: C, $68.58 ; \mathrm{H}, 4.56 ; \mathrm{N}, 10.00$. Found: C, 68.72; H, 4.68; N, 10.28.
5-Chloro-3-(4-bromophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro$1 H$-pyrazolo[3,4-b]quinoline (10b).

This compound was obtained from Vilsmeier-Haack formylation of compound $9 \mathbf{b}(0.89 \mathrm{~g}, 2 \mathrm{mmole})$. The yield was $0.23 \mathrm{~g}(25 \%)$ colorless prisms, $\mathrm{mp} 178-179{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $2289,1594,1555 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.21$ (s, 6 H , $\left.2 \mathrm{CH}_{3}\right), 3.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 7.26-7.65(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) 8.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.41(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 8.45$ (s, $1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ nmr: $\delta, 27.8,34.7,46.8,113.9,121.4,122.9,124.9,126.2$, 127.5, 128.6, 128.8, 129.3, 131.2, 134.6, 136.8, 139.3, 143.6, 157.6 (20 ArC); ms: (m/z) $464(\mathrm{M}+), 426,390$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrClN}_{3}$: C, 62.02; H, 4.12; N; 9.04. Found: C, 62.26; H, 4.35; N, 9.32.
5-Chloro-3-(4-chlorophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro$1 H$-pyrazolo[3,4-b]quinoline-6-carbaldehyde (11a).

This compound was obtained from Vilsmeier-Haack formylation of compound $9 \mathrm{a}(0.80 \mathrm{~g}, 2$ mmole) The yield was $0.45 \mathrm{~g}(50 \%)$, colorless prisms, $\mathrm{mp} 159-160{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: $2745,1685,1592,1556 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 3.18 (s, 2H, CH ${ }_{2}$), 7.37-7.62 (m, 5H, Ph), $8.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 8.39 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $8.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right)$, 10.48 (s, 1H, CHO); ${ }^{13} \mathrm{C} \mathrm{nmr}$: $\delta 26.2,36.8,48.1,114.2,121.3$, $122.4,126.5,127.7,128.4,129.0,129.3,130.6,135.0,138.7$, 143.2, 150.9, 157.8, (20 ArC), 191.5 C=O; ms: (m/z) 447 (M+), 432, 404, 369.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 66.97$; $\mathrm{H}, 4.27$; $\mathrm{N}, 9.37$. Found: C, 67.18; H, 4.56; N, 9.58.
5-Chloro-3-(4-bromophenyl)-7,7-dimethyl-1-phenyl-7,8-dihydro1 H -pyrazolo[3,4-b]quinoline-6-carbaldehyde (11b).
This compound was obtained from Vilsmeier-Haack formylation of compound $9 \mathrm{~b}(0.89 \mathrm{~g}$,

2 mmole), the yield was $0.50 \mathrm{~g}(51 \%)$ colorless prisms, mp $168-169{ }^{\circ} \mathrm{C}$ (ethyl acetate); ir: 2748, 1687, 1593, $1554 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ $\mathrm{nmr}: \delta 1.35\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.27-7.63(\mathrm{~m}, 5 \mathrm{H}$, Ph), 7.99 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $8.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{H}\right)$), $10.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 26.4,36.9$, $48.3,114.3,121.4,122.3,126.4,127.5,127.7$, 128.6, 129.1, $129.4,130.7,135.2,138.8,143.6,144.4,150.8,157.9$ (20 ArC), $191.7 \mathrm{C}=\mathrm{O}$; ms: $(\mathrm{m} / \mathrm{z}) 477(\mathrm{M}+), 448,414$.
Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{BrClN}_{3} \mathrm{O}: \mathrm{C}, 60.93 ; \mathrm{H}, 3.89 ; \mathrm{N} ; 8.53$. Found: C, 61.21; H, 3.96; N, 8.76.

9-(4-Chlorophenyl)-4,4-dimethyl-1,7-diphenyl-1,4,5,7-tetrahydro-dipyrazolo[3,4-b:4,3-f]quinoline (12a).

A solution of compound 11a ($0.45 \mathrm{~g}, 1 \mathrm{mmol}$) and phenylhydrazine ($0.20 \mathrm{~mL}, 2 \mathrm{mmol}$) in ethanol (10 mL) was heated at reflux temperature for one hour. The mixture was cooled to room temperature, the solid that precipitated was collected by filtration and washed with ethanol. The yield was 0.32 g (64%), colorless prisms, mp 206-207 (ethyl acetate); ir: $2128,1594,1553 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.54\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.10(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.93-7.40 (m, 10H, Ph), 8.11 (d, J=8.4Hz, 2H, ArH), $8.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}\right), 8.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 8.55(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{3} \mathrm{H}$); ${ }^{13} \mathrm{C}$ nmr: $\delta 27.6,37.4,48.9,112.7,114.2,120.4,121.2$, $125.0,126.1,128.4,128.9,129.1,128.3,131.1,134.6,135.4$, $138.3,139.2,143.9,156.8$, (27 ArC); ms: (m/z) $501\left(\mathrm{M}^{+}\right), 486$, 444, 394, 243.
Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClN}_{5}$: C, 74.17; H, 4.82; N, 13.95. Found: C, 74.32; H, 4.96; N, 14.17
9-(4-Bromophenyl)-4,4-dimethyl-1,7-diphenyl-1,4,5,7-tetrahydro-dipyrazolo[3,4-b:4,3-f]quinoline (12b).

This compound was obtained from compound $\mathbf{1 1 b}(0.20 \mathrm{~mL}$, $2 \mathrm{mmol})$ and phenylhydrazine ($0.28 \mathrm{~g}, 2 \mathrm{mmol}$) using the method described for 12a; The yield was $0.35 \mathrm{~g}(65 \%)$, colorless prisms, mp 214-215 (ethyl acetate); ir: 2127, 1596, $1558 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.52\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.90-7.39(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}), 8.08\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$), $8.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}\right), 8.43$ (d, J=8.4Hz, 2H, ArH), 8.49 (s, 1H, C ${ }_{3} \mathrm{H}$); ${ }^{13} \mathrm{C}$ nmr: $\delta 27.4,37.2$, 48.6, 112.6, 114.3, 120.6, 121.4, 125.2, 126.3, 128.5, 128.9, $129.3,131.4,134.8,135.5,138.6,139.3,143.8,156.9$, (27 ArC); $\mathrm{ms}:(\mathrm{m} / \mathrm{z}) 545(\mathrm{M}+), 530,488,438,286$.

Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrN}_{5}$: C, 68.14; H, 4.43; N, 12.82. Found: C, 68.36; H, 4.64; N, 12.95 .

Acknowledgment.
Authors thank the University Grant Commission New Delhi for financial support and the Principal K.T.H.M. College, Nashik-2, India.

REFERENCEDS AND NOTES

[1] E. C. Taylor and A. Mc Killop, The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles in Adv. Org. Chem., J. WileyInterscience, New York, NY, 1970, pp-415.
[2] E. C. Taylor and R. K. Loeffler, J. Am. Chem. Soc., 82, 3147 (1960).
[3] P. G. Baraldi, B. Cacciari, R. Romagnoli, G. Spalluto, K. -N. Klotz, E. Leung, K. Varani, S. Gessi, S. Merighi and P. A. Borea, J. Med. Chem., 42, 4473 (1999).
[4] R. K. Robins, J. Am. Chem. Soc., 78, 784 (1956).
[5] C. C. Cheng and R. K. Robins, J. Org. Soc., 21, 1240 (1956).
[6] C. C. Cheng and R. K. Robins, J. Org. Soc., 23, 191 (1958).
[7] C. C. Cheng and R. K. Robins, J. Org. Soc., 23, 852 (1958).
[8] V. Colotta, D. Catarzi, F. Varano, L. Cecchi, G. Filacchioni, C. Martini, L. Trincavelli and A. Lucacchini, J. Med. Chem., 43, 3118 (2000).
[9] D. Catarzi, L. Cecchi, V. Colotta and G. Filacchioni, C. Martini, P. Tacchi and A. Lucacchini J. Med. Chem., 38, 1330 (1995).
[10] M. G. Ferlin, G. Chiarelotto, S. Dall'Acqua, E. Maciocco, M. P. Mascia, M. G. Pisu and G. Biggio, Bioorg. Med. Chem., 13, 3531 (2005).
[11] A. Detsi, V. Bardakos, J. Markopoulous and A. LgglessiMarkopoulous. J. Chem. Soc, Perkin Trans I., 24, 2909 (1996).
[12] K. Tomita, Yakugaku Zasshi., 71, 1100 (1951).
[13] M. Miyoshi, N. Yoneda, K. Matsumoto and M. Suzuki, Japan Patent 52046085 (1977); Chem. Abst., 87, 13510 (1977).
[14] M. Suzuki, K. Matsumoto, M. Miyoshi, N. Yoneda and R. Ishida, Chem. Pharm. Bull., 25, 2606 (1977).
[15] H. H. Otto, O. Rinus and H. Schmelz. Monatsh. Chem., 110, 115 (1979).
[16] M. N. Jachak, A. B. Avhale, C. D. Tantak, R. B. Toche, C. Reidlinger and W. Stadlbauer, J. Heterocyclic Chem., 42, 1311 (2005).

